
Citation: Velasquez, N.; Anani, A.;

Munoz-Gama, J.; Pascual, R. Towards

the Application of Process Mining in

the Mining Industry—An LHD

Maintenance Process Optimization

Case Study. Sustainability 2023, 15,

7974. https://doi.org/10.3390/

su15107974

Academic Editors: Francis F.

Pavloudakis, Christos Roumpos

and Philip-Mark Spanidis

Received: 31 March 2023

Revised: 8 May 2023

Accepted: 11 May 2023

Published: 13 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Towards the Application of Process Mining in the Mining
Industry—An LHD Maintenance Process Optimization
Case Study
Nicolas Velasquez 1, Angelina Anani 2,* , Jorge Munoz-Gama 3 and Rodrigo Pascual 4

1 Department of Mining Engineering, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
nfvelasquez@uc.cl

2 Department of Mining and Geological Engineering, The University of Arizona, Tucson, AZ 85719, USA
3 Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;

jmun@ing.puc.cl
4 Centre for Advanced Asset Analytics, Mechanical Engineering, Universidad de Chile,

Santiago 8320000, Chile; rpascual@uchile.cl
* Correspondence: angelinaanani@arizona.edu; Tel.: +1-520-621-9121

Abstract: Inefficiencies in mine equipment maintenance processes result in high operation costs
and reduce mine sustainability. However, current methods for process optimization are limited
due to a lack of access to structured data. This research aims to test the hypothesis that process
mining techniques can be used to optimize workflow for mine equipment maintenance processes
using low-level data. This is achieved through a process-oriented analysis where low-level data are
processed as an event log and used as input for a developed process model. We present a Discrete-
Event Simulation of the maintenance process to generate an event log from low-level data and analyze
the process with process mining. A case study of the maintenance process in an underground block
caving mine is used to gain operational insight. The diagnosis of the mine’s maintenance process
showed a loss of 23,800 equipment operating hours per year, with a non-production cost of about
1.12 MUSD/year. Process mining obtained a non-biased representation of the maintenance process
and aided in identifying bottlenecks and inefficiencies in the equipment maintenance processes.

Keywords: underground mining; LHD maintenance process; DES; process mining

1. Introduction

Mine equipment maintenance strategies have a significant impact on mining sustain-
ability. Mining operations are dependent on equipment for excavation, transportation, and
processing of minerals, and any downtime due to equipment failure can result in significant
financial losses. Effective equipment maintenance strategies minimize the likelihood of
equipment failures and improve their lifespan, reducing the need for frequent replacements
and repairs, which leads to reduced resource consumption, energy use, and waste gener-
ation. This can contribute to the overall sustainability of mining operations by reducing
their environmental impact and improving their economic viability. Proper maintenance
of equipment can also ensure worker safety, minimize accidents, and reduce the potential
for human health and environmental hazards associated with mining activities. There-
fore, effective equipment maintenance strategies can help mining companies achieve their
sustainability goals and contribute to the long-term viability of the industry [1].

There is a growing interest in the mining industry to innovate and adopt industry
4.0 technologies in its operations. This includes the use of data science approaches to
analyze and improve mining processes [2,3]. However, there is still a significant gap in the
implementation of data sciences in the mining industry [4]. This is projected to change in
the next decade with the emergence and development of new data science technologies on
a large scale. Such changes could positively impact mine asset management [5].
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The maintenance cost in the mining industry is between 30% and 50% of the operating
costs [6]. As a result, the mining industry has made significant efforts to attain high equip-
ment availability and low operating costs through process optimization. Several efforts
have been made to optimize the maintenance process using data science [7]. However,
there is still significant uncertainty in terms of the quantity and quality of data to use
when applying such techniques. Despite the advances in automation that have allowed an
increase in data collection, the availability and use of such data by the industry for resource
management are still lacking. Simulation techniques such as Discrete-Event Simulation
(DES) have been important in addressing data challenges [8,9]. The availability of data
allows for better monitoring of the mining operation’s Key Performance Indicators (KPIs).

Current data science techniques used to analyze data include data mining algorithms
and cluster elements with similar characteristics to machine learning algorithms for data-
based decision-making. Process mining has emerged as a strong technique to analyze
start-to-end processes in recent years.

Process mining (PM) is a novel research area composed of a set of techniques and
algorithms to (1) extract (or mine) valuable process-related information from events (known
as process discovery), (2) check the discrepancies between a process execution with a previ-
ously established process model (conformance checking), and (3) repair or extend a process
model with information about the process execution (known as process enhancement) [9].
Process Mining can obtain a non-biased representation of the analyzed process. The input
of PM algorithms is an event log, i.e., an ordered registry of (actual or simulated) data
where each event that occurs during the process execution is registered and annotated with
information about what and when it happened [10].

This research aims to present a case study on the application of PM in the mining
equipment management system—specifically, the analysis of the maintenance cycle from a
process-oriented worldview. We introduce the integration of DES and PM for the event log
generation and analysis of the maintenance process from a low-level database. We believe
that the application of PM in resource management will reduce the mean time to repair and
enable analysis from the viewpoint of the maintenance cycle [10]. It will also support root
cause detection and monitoring of asset management failures and generate better policies
for resource management and mine sustainability. Achieving these objectives will allow,
in the medium-to-long term, to increase the availability of the equipment, increase the
Overall Equipment Effectiveness (OEE) of the mine, and improve the interaction between
the different functional units.

The main contribution of this research is to set the first precedents, using a case study,
regarding the implementation of PM to optimize the maintenance cycle of underground
mining equipment and highlight the need for field implementation in the industry. In the
following sections, we discuss the use of PM in the mining industry and its integration
with DES. We then present the case study of DES and PM applications for maintenance
process optimization. Finally, we discuss the results and conclusion.

2. Process Mining in the Mining Industry

Process mining is a relatively young discipline that has exponentially advanced in
recent years. Since its inception, it has been applied in a wide range of industries, including
healthcare [11], security [12], telecommunications [13], education [14], software [15], and
aviation [16], among others [17]. This has permitted the development of specialized
software, both commercial—e.g., Celonis, Disco, Minit—and open-source—e.g., ProM,
BupaR, pm4py—[18].

A 2010–2019 review by Kulakli and Birgun [19] showed that PM in the mining industry
is severely understudied despite the expansion of PM in various industries. In general,
there has been an increased application of data mining research in underground mining,
especially in the last five years, leveraged by the information boom. However, this trend is
not reflected in PM. Until the end of 2018, only 5 studies on PM in underground mining have
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been published [20], and to date, not more than 10 studies that refer to PM implementation
in mining can be found in the current literature.

The main reason has been limited knowledge of PM algorithms and tools and their
opportunities in the industry. Second, there is a lack of event log-oriented data for process
modeling and analysis with PM. The application of PM is expected to increase, such as data
mining in the mining industry [21], despite these challenges. Several studies [22,23] have
demonstrated the creation of event logs from low-level data from mine monitoring systems
and domain knowledge to overcome this challenge. Brzychczy and Trzcionkowska [24]
presented a methodology for the generation of appropriate event logs from sensors in un-
derground mines, given the low level of abstraction of the data available in the monitoring
systems of the longwall.

He et al. [25] proposed the use of PM to study and improve the response of rescue
teams to fatal explosions caused by gases in coal mines in China. The authors used
50 cases from a historical event log for their analysis. Szpyrka et al. [26] presented the
implementation of a data preprocessing methodology for the generation of an event log
from low-level data in a longwall process and the application of conformance checking (an
area of PM) to detect possible discrepancies in how the process has really been executed.
Brzychczy et al. [27] presented a case study of PM application in the evaluation of the roof
bolting process in an underground mine. Previous studies focused on the preprocessing
of data to generate event logs from low-level abstraction data sources and the analysis
of processes carried out in underground mining using process discovery, conformance
checking, and process enhancement techniques.

The authors are unaware of any work in the literature that optimizes resource man-
agement processes using PM. Specifically, no applications were found in the optimization
of the mine maintenance cycles. The application of PM to asset management in the mining
industry could be beneficial. Such benefits include providing a clear vision of the processes
carried out in the field, their main defects, and correlating equipment failure type (or opera-
tor) and the cause of the failure. An added benefit is the determination of whether the delay
in repairing a piece of equipment is due to technical or logistical issues, lack or shortage of
spare parts, etc. However, the limitations are rooted in the need for an appropriate quantity
and quality of data in an event log format, trained personnel to develop areas of process
analysis with PM, and implementing and managing the change necessary for adopting
corrective actions.

3. Discrete Event Simulation and Process Mining

Several publications in the literature demonstrate the application of DES for the
analysis of mining processes, maintenance planning, and physical assets management [8].
These studies have a clear bias toward evaluating what to repair and the impact of effective
repair times. They do not analyze the maintenance policies and processes from when a
piece of equipment fails until it is repaired and returned to the field. Despite the high
potential of integrating DES with PM, this combination has not been extensively explored
nor used in the literature. DES and PM are two orthogonal areas with differences in their
goal and approach that can complement each other’s drawbacks.

The main differences between PM and DES are the data source of the represented
model, the ability to evaluate alternative scenarios, and the graphical representation of
process models. The first differentiating point is perhaps the most relevant. While the
simulation typically works from probability distributions to generate data, PM, as a data
science discipline, works from the data to create an analysis from the viewpoint of processes
instead of events, as is the case of DES. Process mining excels in cases where the different
variations of the process are the subject of study. DES is also considered a forward-looking
(what-if analysis) approach, while PM is mostly used as a back-looking approach [28]. This
study integrates DES and PM to achieve our research objectives. We use DES with expert
judgment as a middle layer to preprocess the low-level data collected from the mine’s
system and generate an appropriate event log for analysis with PM. To the best of our
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knowledge, this is the first study that integrates DES and PM to optimize the maintenance
processes of underground mining equipment.

4. Case Study

The case study was performed on the largest block caving copper mine in the world,
with over 4500 km of tunnels. The mine did not have a standardized maintenance process,
although it had initiated work to formalize and standardize the maintenance process.
Historically, the course of action in the event of an equipment failure was based on the
operators and maintenance crews’ experience, adopting previous practices and adding
new ones as the need arose. Some of the established policies included implementing
reliability-centered maintenance (RCM) to address and prioritize failures at a strategic level
and total productive maintenance (TPM) to address failures at a tactical-operational level,
which sometimes incorporated a first diagnosis given by the operator. The maintenance
team believed that an ideal model (Figure 1) could be generated and implemented by the
mine.
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The model in Figure 1 was developed from the data obtained from the databases
present in the systems, applications, and products management software (SAP) of the
mine and expert opinion. Specifically, the databases consist of the orders and notices of
production and maintenance requests for the LHD equipment. An interview with field
experts involved in the maintenance process was conducted to understand the complete
maintenance process from the time an LHD breakdown to its return to the field.
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5. Solution Methodology

The workflow (Figure 2) included data extraction and transformation, system descrip-
tion and characterization, simulation modeling, and analysis with PM.
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5.1. Data Collection and Processing

The databases used for this study were provided and reviewed together with experts
from the mine maintenance section. The data were downloaded from the SAP system,
which included the orders and notices records of the production and equipment main-
tenance. The data were collected for the years 2018, 2019, and 2020 (from January to
June 2020).

The notices database (example in Table 1) consists of the requests made to the main-
tenance section to carry out a specific maintenance activity. It contains information such
as the technical location of the failure, description of the technical location, notice code,
description of notice, corresponding order code, duration of the maintenance, date and
time of the start of the failure, date and time of the end of the failure, and classification of
the failure.

Table 1. Example of Notices database.

Technical
Location
(Code)

Location Maintenance
Type Description Order Code

Duration of
Failure
(Hours)

Failure Start
Date

Time at the
Start of
Failure

End of
Failure Date

Time at the
end of
Failure

THLD-155-
SES-BAL

Bucket
LHD#155 2: corrective Replace

bucket pin 102030123 2.00 19 March
2018 13:00:00 19 March

2018 15:00:00

Code Status Stat. Syst. Notice Code Notice Notice
Descrip-tion Time Date Created Failure Code

X New MECE 21324565 PVEL001 HI234 15:20:39 19 March
2018 PVEL001 J20

Date
modified By Part

replaced

20 March
2018 L Perez MA1HT321

The orders database (example in Table 2) is the record made by the maintenance team
after the generation of the notice and once the maintenance commences. This contains infor-
mation such as the technical location of the failure, name of the technical location, warning
code, description, corresponding notice code, duration of the maintenance, date and time
of the start of the failure, date and time of the end of the failure, failure classification, and
actual cost of maintenance.
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Table 2. Example Orders database.

Technical Location
(Code) Location Actual Summed

Cost (USD)
Notice

Description Notice Code Order Code Short Description
of Failure # Code

THLD-155-SES-BAL Bucket
LHD#155 200.05 HI234 21324565 102030123 LHD bucket pin

replacement 30 NP

Failure start date Failure start
time Failure End date Failure End

time

19 March 2018 13:00:00 19 March 2018 15:00:00

The data were retrieved and ordered based on the order and notice codes. Records that
showed inconsistencies were discarded as outliers or incomplete data. Such inconsistencies
may be due to human error, as the team enters the data manually. The records for unplanned
maintenance that present complete, coherent information and allow traceability of the
evolution of the equipment over time are used. As a result, data from 2018 and 2019 were
used for further analysis.

5.2. System Description and Characterization

The process analyzed was the production and maintenance cycle of the mine. It
consisted of two interconnected environments—the production environment, made up
of a tunnel system in which the LHD equipment extracts and transports the ore, and
the maintenance area, which consists of a maintenance workshop with a capacity of
8 maintenance bays extendable to 10. The maintenance section was made up of a team of
16 mechanics in charge of 75 pieces of equipment, of which 36 were rock breakers, 15 jumbos
(drill rigs), 2 secondary breaking jumbos, and 22 manual-operated mechanical LHDs.
The LHD equipment studied has the system structure, components, and subcomponents
presented in Table 3.

Table 3. LHD system, components, and sub-components.

System Component Subcomponent

Air Conditioning System (ACS)

Electrical System (ELS) Control system
Power system

Structural System (SES)

Bucket
Bogie (framework)

Boom
Cabin

Chassis
Oscillating axle

Hydraulic System (HIS)

Directional control system Right steering cylinder
Left steering cylinder

Brake system

Lift and turn system
Right hoist cylinder
Left hoist cylinder
Tipping cylinder

Automatic Lubrication System (ALS)
Motor System (MOS) Diesel engine

Fire Suppression System (FSS)

Power Train System (PTS)

Torque converter-upper control

Differential

Front differential
Rear differential

Left front final drive
Right front final drive

Left rear final drive
Right rear final drive

Tire and Balance system

Right front tire
Left front tire
Right rear tire
Left rear tire

Transmission
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The operation and repair processes were characterized by modeling the time between
failure (TBF) and time to repair (TTR) distributions. The Arena Input Analyzer software
(v14.0) was used to model the data, as shown in Table 4. The input data modeled (Table 4)
are historical data of subsystem failures collected from the SAP system for 2018 and 2019.
The Weibull distribution (Table 4) is the most widely used distribution for equipment
reliability modeling, and it is generally expressed as

f (T) =
β

η

(
T − γ

η

)β−1
e−(

T−γ
η )

β

where f (T) ≥ 0, T ≥ 0 or γ , β > 0, η > 0,−∞ < γ < ∞, and β is the shape parameter;
η is the scale parameter; and γ is the location parameter. The value of β determines the
failure rate (early-life, constant, and wear-out failures).

Table 4. Probability distributions of subsystem failure.

TBF (Hrs.) TTR (Hrs.)

System Distribution Expression Distribution Expression

ACS Weibull WEIB (148, 0.631) Exponential EXP (3.8)
ELS Weibull WEIB (195, 0.807) Weibull WEIB (2.96, 0.761)
SES Weibull WEIB (189, 0.839) Weibull WEIB (3.6, 0.581)
HIS Weibull WEIB (140, 0.866) Exponential EXP (8.77)
ALS Weibull WEIB (92.7, 0.388) Weibull WEIB (4.32, 0.59)
MOS Weibull WEIB (137, 0.753) Weibull WEIB (3.27, 0.563)
FSS Weibull WEIB (4140, 0.649) Weibull WEIB (12.1, 0.786)
PTS Weibull WEIB (175, 0.772) Weibull WEIB (4.44, 0.567)

The most critical systems and components to be repaired can be determined based
on the data. Standard metrics are used in physical asset management [29], which provide
a strategic view and prioritize systems and time horizons for preventive maintenance.
We perform a failure analysis using a Pareto diagram and a Jack-Knife diagram of global
cost and reliability to understand equipment failure characteristics and analyze the LHD
equipment maintenance process (Figures 3 and 4). Jack-Knife is a non-parametric approach
used to estimate a sampling distribution for the failure data. Figures 3 and 4 show each
system’s time out of service or time from service (TFS) in 2018 and 2019.
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5.3. Simulation Modeling

The Pareto and Jack-Knife analysis and the implementation of an RCM-type mainte-
nance policy effectively prioritize and determine which component to focus maintenance
efforts on (e.g., PTS. SES. HIS) and outline a physical asset management strategy. However,
they do not provide answers to how to optimize the maintenance process. We use PM
to analyze the maintenance process from data, which allows the identification of failures,
bottlenecks, and opportunities for improvement.

The mine does not capture the event log needed to perform PM analysis; therefore,
we use DES to generate such data for the system studied. The DES is used to simulate the
behavior of the time between failures and the effective time to repair at the system level
using the distributions in Table 4. The production and maintenance cycle of the system is
simulated using the Arena simulation software [30]. The LHD equipment is modeled as
entities (objects that flow through the model) using the Create module in Arena (Create
LHD in Figure 5). We then assign them attributes (Assign TBF and TTR in Figure 5) using
the Assign module. The entities (LHD) go through the load-haul-dump production process
(Equipment in production in Figure 5), keeping track of the time between failures. The
equipment fails when the production time (after the equipment returns to the field) is
greater than or equal to the TBF sampled from the input distribution (Table 4). The equip-
ment then goes through the repair process based on TTR activity distributions (Activities
in process in Figure 5). A record module is used to record production and activity times.
The TBF is reinitiated once the equipment returns to the field (Reassign TBF to the repaired
system in Figure 5).
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Given that the mine’s database did not generate logged data of the activities or contain
all the data needed to perform the analysis, interviews with the mine’s experts were
used to generate the remaining data. The data generated from expert interviews were
modeled deterministically (e.g., Operator evaluation time in the field) or with a triangular
distribution where the minimum, mode, and maximum values are used (e.g., The time it
takes for the mechanic to look for spare parts (Table 5)). Figure 5 shows a summarized
flow diagram of the LHD maintenance process simulated in Arena. The DES model can be
mathematically expressed as follows:{

x1(t), . . . . . . , xp(t)
}

t0 ≤ t ≤ t f

{y1(t), . . . . . . , ym(t)} t0 ≤ t ≤ t f
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x(t) =
[
x1(t), . . . . . . , xp(t)

]T

y(t) = [y1(t), . . . . . . , ym(t) ]
T

y1(t) = f1
(

x1(t), . . . . . . ., xp(t)
)
, . . . .., ym(t) = fm

(
x1(t), . . . . . . ., xp(t)

)
y = f (x) = [ f1

(
x1(t), . . . . . . ., xp(t)

)
, . . . .., fm

(
x1(t), . . . . . . ., xp(t)

)
]
T

Table 5. Probability distribution of maintenance process activities.

Activity Values and Time Distributions (Seconds)

Operator evaluation time in the field 600

The time it takes for the mechanic to look for
spare parts TRIA (300, 600, 900)

The time the mechanic spends waiting for an
unavailable tool TRIA (750, 900, 950)

The time the mechanic waits for a truck to be
available to go to the field TRIA (1800, 2700, 3600)

The time it takes for the mechanic to receive,
check, and drive the truck 300

Travel time from workshop to equipment TRIA (1800, 1800, 7200)

Time for evaluation in the field by a mechanic 600

The time it takes for the mechanic to return to
the workshop to look for spare parts TRIA (1800, 1800, 7200)

The time it takes to tow the equipment to the
workshop as a result of a major failure TRIA (9000, 12,600, 57,600)

The time it takes for the equipment to travel to
the workshop with a minor failure TRIA (1800, 1800, 7200)

The time it takes for a piece of equipment to
arrive at the workshop when transported by

the operator
TRIA (1800, 1800, 7200)

The time it takes for a piece of equipment to be
evaluated in the workshop 600

Queuing time for washing TRIA (3600, 5400, 10,800)

The time it takes for a piece of equipment to be
disassembled to remove an urgently needed

part for another piece of equipment.
TRIA (3600, 7200, 10,800)

Waiting time for spare parts in the workshop TRIA (600, 1200, 1800)

The time it takes for the mechanic to attend to
an emergency before returning to

the equipment
TRIA (1800, 14,400, 28,800)

The time that the equipment waits to be
returned once it leaves maintenance TRIA (1200, 4800, 6000)

The time that the equipment takes to return to
the field since its withdrawal from the field 600

Equipment wash time TRIA (1800, 2700, 10,800)

The input (e.g., LHD loading and travel times) and output (e.g., production, TBF) are
given by the vectors x(t) and y(t), respectively, and f is the function that expresses the
relationship between x and y over time t. The inputs x are in Tables 4 and 5. The output y
is used for model validation and the event log data generation.
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5.4. Creating an Event Log

We used the read/write module in Arena as the basis to generate an event log of
activities and their simulated times. An example of the event log is presented in Figure 6.
The log consists of a failure event ID number, equipment ID, the system component, current
time (TNOW in seconds), time between failure (TBF in seconds), diagnosis time in the field
(in seconds), and time searching for parts (in seconds), among others.
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The events are presented in chronological order. In cases where activities were not
performed, an arbitrary code “565656956” was defined as default. The event log is the
key input to the PM analysis. Therefore, it must be consistent and ordered to avoid
compromising subsequent analysis.

5.5. Process Mining

We used a Directly-Follows Graph Process Discovery algorithm [31] through the Disco
Process Mining tool [32]. Directly-Follows Graph was selected given the understandability
of the resulting process models for non-experts in PM, its efficiency, and its implementation
on most commercial and open-source PM tools.

The notations and PM concept used are defined as follows:

• Consider a set of global attributes Aglobal and {acName, timestamp, acID} ⊆ Aglobal ,
where acName is the activity (case) name (e.g., diagnose LHD in the field), timestamp
is the time stamp that an event occurs (e.g., LHD failure), and acID is the process
identifier that the event belongs to (e.g., ID number in Figure 6).

• V ∈ Aglobal ⇒ P
(

Vglobal

)
, where Vglobal is the set of global values V and P

(
Vglobal

)
returns all the possible values an attribute can take.

• Mglobal =
{

m ∈ Aglobal ; Vglobal

∣∣∣ ∀at ∈ dom (m) : m(at) ∈ V (at)
}

maps attributes
to their correct values at.

• We define ⊥ ∈ Vglobal such that ⊥ /∈ V(at) ∀at ∈ Aglobal . That is, ⊥ is a subset of the
global values where ⊥ is an arbitrary value for attributes with a missing, undefined,
or unknown number.

• Therefore, for an event e ∈ ξ with a known timestamp, associated activity name, and
identifier, e(acName) 6= ⊥, e(timestamp) 6= ⊥, and e(acID) 6= ⊥.

• The event log is in chronological order. Therefore, ej(timestamp) ≤ ek(timestamp) if
ej occurs before ek and ej(acID) = ek(acID) if ej and ek belongs to the same process
(case) instance. Events related to the same process instance are known as the Trace.

Once the event log is uploaded to the Disco software, the tool displays the process
variants developed during the maintenance cycle. Workflow filters are then used to perform
the different analyses and draw inferences.
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The following aspects were considered in the analysis:

• The opportunity cost of non-productivity must be considered when analyzing the process.
• Economic analysis can be used to determine the maintenance strategy to be followed.

However, its execution can be improved regardless of the selected strategy.
• The event log used was generated from a simulation model that modeled the time

between failures and the time to repair the LHD as distributions.
• The model was validated through expert opinions at the mine under study.
• The result of this analysis does not seek the direct implementation of PM as a standard

by the mine but presents an opportunity for improvement.

The LHD equipment maintenance process is analyzed based on the components with
the most frequent failure or the most complex and acute components. The event log
generated had 25,644 case instances—that is, the maintenance process of 25,644 failures that
occurred to 22 LHD equipment. The data were generated for a period of 5 simulated years.
Among the instance, 30 variations of the process were observed, starting from the time a
piece of equipment fails until it returns to the field. The foregoing gives notions of the low
level of standardization and/or the dynamism of the process and the existence of multiple
decisions. Two key decision-makers were identified, the operator and the maintenance
team. Their decisions modify the analyzed process without prejudice to the fundamental
role played by maintenance planners, analysts, and supply personnel.

Two maintenance environments are seen in the Disco software process flow—the
workshop and the field. All maintenance carried out in the workshop must first go through
the “Washing” activity (represented by the “Equipment queued for washing” activity in
Figure 1), which generates a bottleneck. The role of the operator is recognized as the first
diagnosis, which is reflected in two key decisions; the first is related to taking the equipment
to the workshop or requesting the mechanic to diagnose the equipment in the field. The
second is a diagnosis first by the operator and relating the diagnosis to the mechanic or
ignoring it (Figure 1).

Additional activities were detected as part of the process during a conformity analysis
with the field experts that could be considered bottlenecks or inefficiencies in the pro-
cess. Conformance checking techniques compare observed behavior (i.e., event data) with
modeled behavior (i.e., process models) to identify deviations. The impact of bottlenecks
can be measured in terms of the time added to the maintenance cycle, which entails an
opportunity cost defined by the economic value of the material that the equipment does not
extract when it is unavailable. The identified activities and bottlenecks identified during
conformance checking include the following:

Additional activities:

• Mechanic looking for spare parts.
• Mechanic travels by work truck.
• Mechanic tows the equipment.

Bottlenecks (process delays):

• Mechanic leaves to attend to an emergency.
• Equipment waiting to be extracted from the field.
• Equipment queued for washing.
• Mechanic waits for the work truck.
• The equipment is disassembled to remove an urgently needed part for another piece

of equipment.
• The mechanic returns to the workshop to look for a spare part.
• Waiting for spare parts
• Mechanic waiting for tools.

Five key stages of the process are established and analyzed—diagnosis/initial evalua-
tion, reaction time, failure prioritization, preparation process, effective maintenance, and
return to field operations.
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5.5.1. Diagnosis/Initial Evaluation

A process filter is first applied, eliminating all instances in which the “Wash” activity is
carried out to obtain the instances of field maintenance. This has resulted in 7059 instances
(27.5%) of the 25,644 total generated in the 5-year simulation. This value is close to the 30%
defined by the field experts as a general rule.

Subsequently, the model is changed to show only the cases that included the “Washing”
activity to obtain failures repaired in the workshop, resulting in 18,585 (72.5%) instances.
The greater the complexity of these variants is, the higher the variability in the process itself
is. Unlike failures repaired in the field, the process to repair in the workshop takes longer,
with a mean time to repair (MTTR) of 8.2 h. It is evident that the faults repaired in the field
are less acute, repaired faster, and less frequent (Table 6). Eliminating the bottlenecks in
the process can significantly reduce the time to repair and have more people available for
critical failures in the workshop or emergencies.

Table 6. Comparative summary of variants repaired in the workshop versus in the field.

Maintenance Location Number of Instances MTTR

Field maintenance 7059 21.8 min

Workshop maintenance 18,585 8.2 h

The evaluation of maintenance in the field revealed three inefficiencies in the process.
The first was when the operator tells the mechanic that the breakdown can be repaired
in the field but misdiagnoses the failure. This occurred in 1062 instances (4.14% of the
total), on average, which is 212.4 instances per year. When a misdiagnosis was made, the
maintenance process duration increased by 142.2 min, the equivalent of 503 h per year.
The second error was when the operator indicated that the failure cannot be repaired
in the field, yet it can. This failure occurred in 1669 instances (6.5% of the total) and,
on average, 333.8 instances per year. Each time this diagnostic error was generated, the
maintenance process duration increased by 112.3 min (625 h per year). The third error in
the Diagnosis/Initial Evaluation stage occurred when the operator indicated that it can
be repaired in the field but cannot. This failure occurred in 12,579 instances (49% of the
total), which was 2515.8 instances per year on average. The maintenance process duration
was increased by 16.2 min when such an error was made, resulting in an increase of about
679 h per year.

In the case of workshop maintenance, we analyzed the average time from failure until
they reached the “Wash” activity depending on whether the operator requested assistance
on-site first (16,335 cases—63.7% of the total cases) or took the equipment directly to the
workshop (2250 cases—8.8% of the total cases). In the first instance, it is observed that the
average time between the operator carrying out the evaluation in the field and arriving at
the workshop for washing was 287.7 min. In contrast, in the second case, it was 73.9 min.
This difference occurred because, in 30.6% of the cases in which the operator requested
an on-site diagnosis from the mechanic, it was necessary to tow the equipment to the
workshop, which had an average duration of 6.7 h. It did not include cases where the
equipment was in a condition to be driven directly to the workshop.

It was deduced that 70% of the failures in which the operator requested a field diag-
nosis did not require towing, and the equipment could have been taken directly to the
workshop. If properly diagnosed, this would have generated a saving of 213.7 min in
11,337 cases (44% of the total cases). If the operator had been trained to make a better
diagnosis, the availability of the equipment could have increased by 8076 h per year.

5.5.2. Reaction Time

The reaction time of the mechanics was affected by the limited work truck fleet needed
to go to the place where the LHD equipment was located. In 7038 instances (27.4% of the
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total), the mechanics had to wait for a truck, which increased the response time by 44 min
per failure. This was equivalent to 1407.6 delays (1032 h) per year.

5.5.3. Failure Prioritization

The third stage of the process is the failure prioritization process. Once an operator
requests assistance and a diagnosis of the failure is carried out in the field, it is classified
according to whether the equipment needs to be towed and escorted to the workshop (major
failure) or can travel to the workshop by itself (minor failure). This classification is relevant
when planning which failures to prioritize, given that 4998 instances required towing, with
an average transfer time to the workshop of 6.7 h. Comparatively, 11,337 instances did not
require towing to the workshop and had an average transfer time of 57 min. In other words,
approximately seven units with minor faults are equivalent to one unit with a major failure.
This generates a trade-off that must be considered (Table 7). The effective maintenance
time of an acute failure is greater than that of a minor failure. Equipment with an acute
failure not removed and taken to a workshop can obstruct haulage ways, preventing its
use by other equipment. Therefore, it is important to analyze each case to determine if it is
possible to postpone the repair of an acute failure to accelerate the return to the operation
of equipment with a minor failure.

Table 7. Comparison of minor and major failures repaired in the workshop.

Type of Failure Number of Instances Transfer Time Unavailable Time Due to Transfer to Workshop

Minor Failure 11,337 57 min 2154 h/year

Major Failure 4998 6.7 h 6697 h/year

5.5.4. Preparation Process

The preparation process begins once the equipment enters the “washing queue” and
ends when it reaches the maintenance bay. At this stage, several activities are considered
bottlenecks, such as the queue for washing, waiting for tools, equipment disassembly to
repair other more critical ones, maintenance breaks to address emergencies, and waiting
for spare parts.

Of the instances evaluated, 9268 (36.1% of the total) maintenance tasks were paused to
attend to an emergency, which takes an average of 246 min. Instances related to waiting
in line to enter the wash were 3709 (14.4% of the total), with an average time of 106.7 min.
Additionally, 73 (0.3% of the total) were related to the mechanic waiting for tools for about
13.9 min on average. Cases where the equipment must be disassembled to deliver parts to
another piece of equipment with a higher priority to return to operations attributed to 1651
(6.4% of the total cases) instances (an average of 20.1 min). Finally, 5596 (21.8% of the total
cases) instances were cases where the team had to wait for a replacement for about 144 min
on average. The availability of tools had the least impact compared to other bottlenecks.
Notably, the operating losses at this stage totaled 9958 h/year.

5.5.5. Effective Maintenance and Return to Operation

The last stage of the process is the effective maintenance and return to field operation
stage. The analysis revealed that 25,644 instances had a MTTR of 6.0 h, with a median
of 4.6 h. This indicated that a fair number of minor failures exist that deviate from the
meantime to repair. On the other hand, 12,948 (50.5%) of the instances involve equipment
waiting an average of 69 min for their return to the field after repair, equivalent to operating
losses of 2978 h per year.

6. Results

Based on the LHD maintenance process analysis, an equivalent downtime was com-
puted for the different bottlenecks. The downtimes represent the time that the equipment
stops working while undergoing the maintenance process and incurs a non-productive
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opportunity cost. Table 8 shows the downtime of each non-productive activity and its
corresponding opportunity cost. From Figure 7, it is evident that the greatest impact on lost
operating hours is associated with the misdiagnosis by operators who requested towing
from the field and could have traveled to the workshop without needing towing. This can
be minimized through operator training and strengthening operator–mechanic relations,
which also addresses other causes of operational loss.

Table 8. Opportunity cost due to downtimes in the LHD maintenance process.

Code Operational Bottlenecks Number of Cases
per Year

Downtime Due to
Failure (Minutes)

Annual Downtime
(Hours)

Opportunity Cost
(KUSD/Year)

A Wrong initial diagnosis of
the failure 212 142.2 503 24

B
Operator erroneously indicates
that failure cannot be repaired in
the field

334 112.3 625 29

C
Operator erroneously indicates
that failure can be repaired in
the field

2516 16.2 679 32

D Operator requests towing but
does not need towing 2267 213.7 8076 378

E Mechanic must wait for a truck 1408 44 1032 48

F Breaks due to other
emergency maintenance 1854 246 7600 356

G Equipment waiting for washing 742 106.7 1319 62
H Waiting for tools 18 13.9 4 0.22

I Equipment is disassembled to
fix another 330 120 660 31

J Equipment waiting for parts 1119 20.1 375 18

K Equipment awaits return
to operation 2590 69 2978 140

TOTAL 23,852 1.12 M
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The second highest impact is given by the detention of maintenance to address other
equipment failures that require urgent attention (Figure 7). This must be analyzed in depth
to detect the root cause of these unforeseen events and favor operational continuity. The
third highest impact on equipment availability is waiting for the equipment to be returned
to the field after repair. This is a logistical factor that must be addressed urgently, given
its impact.

Although the waiting time for washing is a bottleneck in the process, a cost–benefit
analysis must be performed to determine whether it is economically feasible to build
another washing station to speed up the process. An analysis must be performed to
determine if there will be enough personnel to cater for the equipment by having more
than one piece of equipment washed and prepared for maintenance. Finally, the option of
having more work trucks available to transport maintenance personnel to the field should
also be evaluated to determine its impact on operational losses.

Overall, a standardized maintenance procedure that determines whether a piece of
equipment should be repaired in the field or the workshop, how long the maintenance
should take on average, or if its performance is within normal limits will be beneficial to
the mine. The maintenance manager is also interested in which mechanic has the shortest
time to repair a piece of equipment and what the mechanic does differently.

Similarly, personnel who interact with the maintenance section, such as the equipment
operator, should know their role in the maintenance cycle and how it affects the operation.
For example, the operator must know when to ask for assistance in the field or take failed
equipment to the workshop. The operators must understand activities that contribute to
the better overall performance of the equipment.

7. Conclusions

This research applied PM in the analysis and optimization of the mine maintenance
processes. The maintenance process of an LHD equipment in the largest underground
copper mine in Chile was used as a case study. We identified the availability of generated
logged data by a system and the quality and quantity of the data as pertinent challenges
limiting PM use in the mining industry. To overcome this challenge, we employed DES,
along with expert opinions and domain knowledge, to generate a database of 25,644 sim-
ulated instances for the production and maintenance systems of an underground copper
mine. The DES output was validated by field experts. The equipment failure data were col-
lected and filtered, and unplanned failures of the subsystems of the LHD equipment were
identified. Five stages of the production and maintenance processes were analyzed, includ-
ing diagnosis/initial evaluation, reaction time, failure prioritization, preparation process,
effective maintenance, and return to operation. The analysis identified 11 non-productive
activities and their lost time and opportunity cost. The total loss time was determined to
be 23,800 h per year with a cost, due to non-production, of about 1.12 MUSD/year. It was
determined that the highest productive time losses were associated with the misdiagnosis
by operators who requested towing from the field and could have traveled to the workshop
without the need for towing. The detention of maintenance to address other equipment
failures that required urgent attention and waiting for the equipment to be returned to the
field after repair also contributed significantly to lost productive time.

Although the data used to generate the log were obtained from the mine maintenance
system and expert interview, it is recommended that future work use actual logged data
generated by the system—an aspect that is difficult to achieve, particularly in the mining
industry. We also recommend the field testing of the recommendations made to the mine,
such as increasing the maintenance team truck fleet and training LHD operators to better
diagnose equipment failures. The analysis performed in this research can be applied to
other equipment, mining methods, and mine areas. Further research will study this aspect.

Using a case study, our research sets the first precedent regarding the implementation
of PM to optimize the maintenance cycle of underground mining equipment and highlights
the need for field implementation in the industry. Process mining obtained a non-biased
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representation of the process and aided in identifying bottlenecks and inefficiencies in the
equipment maintenance processes. It provided quantifiable impacts of inefficiencies in the
process, allowing for optimal decision-making.
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